NFL Matchup Predictor

EECS 349, Northwestern University Spring 2016
Thornton Uhl (thorntonuhl2018(@u.northwestern.edu)
Daniel Thomas (danielthomas2018@u.northwestern.edu)

Scott Renshaw (scottrenshaw2018@u.northwestern.edu)

Introduction

American football is one of the hardest sports to predict in the world. There is an astounding range of
factors which determine the outcome of each game - including player statistics, weather, stadium environment, etc.
Being able accurately predict NFL games has a huge range of implications with regard to betting, sports
management, sports analytics, etc. Thus, our question for this project is as follows: Given any matchup of two teams
on a given week, can we predict the winner correctly? Because of the nature of NFL games, the best predictors do
not perform with better than 72% accuracy. As such, our goal was to get as close to this figure as possible -
hopefully within 5% of it.

Process

The first (and by far the most time-intensive) part of this project was data compilation. Because of the
nature of the required data, there were no complete data sets available. However, we were able to collect smaller
data sets from pro-football-reference.com. These data sets listed team statistics for all 32 NFL franchises in
game-by-game format. We downloaded these CSV data sets, which had the following attributes for each game:
Location, Opponent, Points Scored, Points Allowed, First Downs, First Downs Allowed, Total Yards Gained, Total
Yards Allowed, Passing Yards Gained, Passing Yards Allowed, Rushing Yards Gained, Rushing Yards Allowed,
Average Turnovers, Average Turnovers Allowed, Expected Offensive Points, Expected Defensive Points, and
Expected Special Teams Points. We imported this data into Excel and used Excel functions to convert the data into
moving averages. For week 1, we imported averages from the previous season. For example, in predicting week 3
matchups, we used an average of the team’s statistics from the previous season, week 1, and week 2. We then had 32
distinct data sets - one for each NFL franchise. We compiled the data for all 32 teams into a single CSV file, with
(32 teams)*(16 games per team) = 512 instances. Afterward, this entire process was repeated such that we had a
training set (every matchup from the 2014-2015 NFL season) and a test set (every matchup from the 2015-2016
NFL season).

Our initial data sets had no attributes besides pure NFL statistics. We ran 12 classifiers on our data, which
produced these 10-fold accuracies in Weka:

ZeroR J48 1Bk Multilayer Decision Table Naive Bayes
Perceptron
49.2188% 57.4219% 52.1484% 57.4219% 62.1094% 55.2734%
Logistic Bayes Net JRip KStar Conjunctive SMO
Rule
61.1328% 62.5% 53.3203% 50.3906% 56.6406% 64.0625%

SMO was the best performing classifier on our initial Weka tests. (Also note that Bayes Net and Decision
Table were among the best performing classifiers - an early indication of the usefulness for DTNB for this project,
although Naive Bayes was an average performer.)
However, because football is so unpredictable of a sport, we sought to collect more statistics for inclusion

in our data set. We felt that we might be able to increase our performance if we could numerically capture a team’s

confidence - it’s week-by-week momentum. Confidence/momentum is a huge factor in determining the outcome of

mailto:thorntonuhl2018@u.northwestern.edu
mailto:danielthomas2018@u.northwestern.edu
mailto:scottrenshaw2018@u.northwestern.edu

a given matchup, but it is very difficult to capture numerically. We sought to create an expression for momentum
that could get our accuracy closer to 72%.

In order to create this expression, we first had to determine which attributes were most important. We did
this by examining early branches of pruned J48 trees on Weka. Predictably, point scored and points allowed were
very commonly atop the list. However - more interestingly - we noticed that turnovers also extremely telling. Teams
that turned the ball a few times a game, on average, were performing considerably worse than other teams. As such,
we developed an expression for momentum by including these two important characteristics. We ran tons of tests in
Weka with slightly different data, each time making a small adjustment to the expression. Eventually we got the best
results using this expression:

Momentum(week n) =
[Tm(n-3)+Tm(n-2)+Tm(n-1)-Opp(n-3)-Opp(n-2)-Opp(n-1)]-[DTO(n-3)+DTO(n-2)+DTO(n-1)-OTO(n-3)-OTO(n-2
)-OTO(n-1)]*100

This momentum function improved accuracy among the majority of the tests, including a 1.9531% Logistic
accuracy increase. Because we were only trying to get closer to 72%, we were pleased with a ~2% accuracy
increase. As such, we turned to Python and wrote a program with functions that would introduce new
momentum/confidence attributes and deal with all the Excel/CSV manipulation itself. In the meantime, we
continued to test on Weka and noticed that DTNB was consistently outperforming all other classifiers (65.2344% on
our new data that included the Momentum attribute.) We did some research about the Decision Table-Naive Bayes
hybrid and understood that because of the nature of our data, DTNB would continue to consistently yield the highest
accuracy numbers. For any given team and week, one of the most important attributes to consider is a team’s
opponent. However, the large majority of our data is numerical/statistical. Because the optimal classification occurs
by examining one extremely important categorical attribute and numerous numerical attributes, DTNB is very
well-suited for our project (and any similar sports matchup predictor, for that matter.) This is easily observable by
examining J48 on Weka:

Classifier output

—=FF =T STTISTo ST = =
| Opp = St. Louis Rams: L (2.8)
0TotYd = 311.732143
| Opp = Miami Dolphins
| | DlstD <= 20.479167
| | | DRushY == 92.776786: W (4.9/1.8)
| | | DRushY = 92.776786: L (4.8)
| | D1stD > 20.479167: W (5.8)
| Opp = Minnesota Vikings
| | Location = A
| | | DPassY <= 2408.796875: W (4.0/1.8)
| | | DPassY = 248.796875: L (3.8)
| | Location = H: W (6.8)
| Opp = Oakland Raiders
| | Location = A

| | | DTotYd == 327.296875: L {4.0/1.8)

| | | DTotYd = 327.296875: W {(4.8)

| | Location = H: W (8.8}

|

I

I

I

I

I

I

I

I

I

I

Opp = Kansas City Chiefs

| DPassY == 24@.294643
| | 01stD == 19,6@9375
| | | Tm <= 21.83125: L (2.8)
| | | Tm> 21.83125: W (2.0)
| | 01stD > 19.6@09375: L (6.8)
| DPassY = 240.294643: W (4.8)
Opp = Cincinnatl Bengals
| DTO == 2.21875

| | OTO == 1.778833: W (4.0/1.0)
| | OTO = 1.77@833: L (6.8)

| DTO > 2.21875: W (3.8/1.8)

Observe that for J48, Opponent is one of the first splits, and then different numerical attributes are
considered, given each opponent. This supported our decision to use strictly DTNB for the remainder of the project.
Until this point, we had been constantly playing with Weka and the scikit-learn module on Python with SciPy,
NumPy, and matplotlib. However, because of the nature of our tree and the Naive Bayes learning curve (see below)
it was clear that our data was well-suited for DTNB, and we would not achieve higher accuracy with other
classification methods. Using the object editor in Weka, we found that the best function was “DTNB -X 1.

Naive Bayes Learning Curve

Percent Correctly Classified

0 20 40 60 BD 100

Percent of Data Used

Once our Python code was finished, we were able to supplement the data with extra analytical attributes.
The idea was to input the data of statistical averages for each team’s season, game-by-game, and use the code to
highlight patterns. One potential information source we checked was the derivative of some statistics with respect to
each game as a time step. Also, we built off the momentum expression that gave us the ~2% Logistic accuracy
increase, attempting to enumerate the potential for a team to continue a “hot streak™ in a particular statistical
category from game to game. This often involved differentials of a particular statistic with between a given team and
the average of its recent opponents. We added ten attributes with analyze.py. The datasets, the code, and comments
within the python file describing each attribute can be found on our github repository'. The immediate addition of
these ten attributes actually lowered our DTNB accuracy. We then tested data sets with just one attribute, iterating
through which attribute it would be, and increasing the number of attributes we used. We observed the optimal
performance when we excluded yard differential and included scoring momentum3, scoring_ momentum4, w_1. We
found that the other attributes were not used and therefore didn’t impact the accuracy.

Conclusion’

The optimal attribute selection using analyze.py yielded an accuracy of 66.9922%. This was just .0078
below our initial goal of getting within 5% of the current best NFL predictors. We benefited from DTNB as a
classifier (initial accuracy ~65%) and then added another ~2% accuracy by defining and coding our own
mathematical expressions. One interesting thing we learned from our testing was that yard differentials have
essentially no effect on game outcome. Turnovers, for example, were far more important. In other words, it doesn’t
matter how far a team drives downfield if they fail to convert in the Red Zone or turn the ball over.

' https://github.com/danielrthomas/EECS349 NFL_Predictor

2 Work distribution: Typically all three of us were present at our group meetings, so most work was done together.
That said, Thornton and Scott generally focused on the data compilation, Weka testing, and scikit-learn, and Dan
focused on attribute analysis through Python.

https://github.com/danielrthomas/EECS349_NFL_Predictor

